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Abstract
Testing of AI systems is important for ensuring accuracy and re-
liability. In this study, we demonstrate how scenario testing with
demographically varied subjects, a form of prospective testing that
simulates real-world conditions, revealed significant performance
issues in biometric systems prior to broad deployment. Using gener-
alized linear modeling, we show that subjects’ measured skin light-
ness, along with other demographic factors, significantly impacted
the probability of failure to detect a face. Failure rates increased
from just 0.28% for subjects with the lightest skin in our sample
to 24.34% for subjects with the darkest, controlling for other fac-
tors. We show that skin lightness, rather than self-reported race,
best explained the differences in system performance. We trace
these issues to widely used, older methods in open-source packages
for face detection. Furthermore, this demographic differential is
not observed when testing open-source packages using a different,
more curated dataset. Our results highlight the need to evaluate
full multi-component, operationally deployed AI systems and the
role of scenario testing as a critical component of AI governance.
One way to mitigate the likelihood that poor-performing, older
open source methods are deployed in an operational system would
be to deprecate these functions in favor of higher-performing al-
ternatives. Prospective assessments of AI, in real-world use cases
with demographically varied subjects, should be used to identify
performance issues before these systems are operationalized.

CCS Concepts
• General and reference → Evaluation; • Human-centered
computing→ User studies; • Computing methodologies→
Biometrics.
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1 Introduction
The rapid growth and adoption of artificial intelligence (AI) and
machine learning (ML) technologies has spurred governments and
other organizations to study the potential benefits and harms of
these technologies and to develop regulations that promote the
benefits and mitigate the harms. In 2024 alone, the European Union
passed Regulation (EU) 2024/1689, also known as the AI Act [29],
the U.S. Commission on Civil Rights released “The Civil Rights Im-
plications of the Federal Use of Facial Recognition Technology” [28]
and a joint report was issued by the White House Office of Science
and Technology Policy, the U.S. Department of Homeland Security,
and the U.S. Department of Justice on the U.S. federal government’s
use of biometric technologies [26]. While each of these documents
varies in its exact focus and recommended actions, the need for
testing of AI systems in operationally relevant scenarios emerged
as a common theme. The EU AI Act has explicit exemptions for
"testing in real world conditions" for both AI system providers (Ar-
ticle 60) and national regulation authorities (Article 74), while [28]
called the "development of an operational testing protocol" a key
recommendation for face recognition systems and [26] specified
testing "as close to an operational context as possible" as a best
practice.

But why this novel emphasis on operationally relevant testing?
Technology testing of AI applications typically involves retrospec-
tive testing on curated datasets. This allows for benchmarking and
performance tracking to identify algorithms with the best poten-
tial for utility in the real world (“state of the art”) [12]. Scenario
and operational testing of AI applications involves collecting new
data, either in simulated real-world conditions (scenario testing) or
real-world conditions (operational) to test the full system. Scenario
and operational tests of AI systems can reveal new performance
issues not encountered in technology tests, including in sample
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acquisition [14, 15] because these forms of testing evaluate the full
system (e.g. camera systems, user interfaces, signage) in concert
with the use-case and user interaction.

Face recognition is a special class of AI systems that is concerned
with establishing the identity of individuals. Automated face recog-
nition is often used for access control to secure spaces. A key step
in automated face recognition is detecting a face in an image, which
is necessary for all subsequent face recognition operations. In this
context, if face acquisition fails, a human must manually carry out
the task of identity validation, which is inconvenient and potentially
prone to error. It is therefore important to ensure that automated
face recognition processes work for all individuals, independent of
their demographic group membership. Evaluations to establish face
recognition performance are socio-technical in nature, since they
include both the technology (face recognition system) and social
components (humans, signage, etc.).

There is a significant body of research on the topic of challenges
faced with automated face detection [3, 13]. Performance differen-
tials including demographic effects are not new. Existing literature
exposes performance differentials including those across different
demographic groups such as race and skin tone [2, 8, 21, 39]. Emerg-
ing research aims to provide better balanced training datasets [20,
31] and explores synthetic data to address ethical and legal chal-
lenges with sourcing face data for training and development of
modern face detection [16, 23]. While ideally face detectors would
be modern variants supported by these research efforts, reality re-
quires that a real-world implementation of the theoretical needs to
be cost effective and easy to put into practice. Even though well-
known theoretical issues exist with open-source face detection
algorithms, they still remain easy to implement, train, and main-
tain, thus are still used in commercial applications today [25, 34].

This research documents the findings of a scenario test of two
face acquisition systems that were being prepared for deployment
to facilitate travel processing in real world locations. For this manu-
script, we’ve obfuscated the system names as System A and System
B. Both systems had automated face acquisition software to capture
face samples without the assistance of a human operator. System A
utilized an undisclosed proprietary face detection algorithm. System
B utilized a combined OpenCV Haar cascade frontal classifier and
Haar Cascade eye classifier for face detection. We examine the accu-
racy and demographic differentials in accuracy using self-reported
and measured demographic variables for these two systems and
investigate the face detection component as a potential source of
observed variability using three widely utilized open-source face
detection algorithms: OpenCV, Dlib, and a DNN-based detector
(DNN).

The contributions of this research are four-fold. First, we demon-
strate how scenario testing revealed significant differences in failure-
to-acquire rates across the two face acquisition systems as tested in
their intended high-throughput use case. System B failed-to-acquire
over 20 times the number of subjects as System A. Second, we show
these failures to acquire do not happen at random and occur at un-
even rates across different demographic groups. Using generalized
linear modeling, we show that, of the demographic variables con-
trolled for in this study, estimated probabilities of failure-to-acquire
on System B increased for volunteers with darker skin, glasses, head
coverings, and older ages. These performance issues validate the

recent regulatory focus on the evaluation of operational systems.
Third, we reproduce similar failure rates and demographic effects
exhibited by System B when running the OpenCV Haar-cascade
face detector on images acquired by System A. Finally, we show
that another popular face detector from Dlib shows similar, but
distinct significant demographic effects on images from System A.
Neither detector shows issues handling images from an enrollment
use-case with a more controlled environment.

Overall, this socio-technical evaluation shows that both OpenCV
and Dlib have significant performance differentials relative to a
newer DNN-based detector and demonstrates the need for pre-
deployment testing of AI systems as a critical component of AI
governance. We discuss the real-world harms that can result from
including these popular tools in standard machine vision libraries
and propose mitigating the risk of harm by deprecating systems
with known performance issues when better performing alterna-
tives are available.

2 Background
2.1 Test Methodologies for Biometric

Technologies
Testing of biometric systems is governed by long-standing interna-
tional standards which define three different test types, each with
its own benefits and limitations: technology testing, operational
testing, and scenario testing [18]. Technology testing focuses on
computing metrics for specific subsystems (e.g., matching algo-
rithms) on large benchmark datasets to report performance metrics
useful for comparing the performance of different biometric tech-
nologies or tracking technology performance improvement over
time. However, benchmark datasets used for technology tests re-
main fixed over time and may not represent new data captured in
specific operational use cases [9]. Therefore, while findings from
technology tests can describe how technology performs in general,
measured performance may not apply to a specific technology use-
case. Additionally, because the datasets are fixed, augmenting these
data with new, ground-truthed, demographic information about
the data subjects is often not possible.

Operational testing involves testing full operationally deployed
systems in a specific operational environment. This type of test-
ing uses data captured by deployed biometric systems within the
operational environment and may include data from regular sys-
tem users to evaluate performance. Operational data is associated
with greater privacy concerns and results in limited demographic
metadata due to governing regulations, laws, and other consumer
protections [1]. Testing in operational settings includes uncon-
trolled environmental factors and system integration effects that
may make it challenging to isolate the impact of specific factors on
technology performance. Findings from operational testing may
not generalize to other situations or use-cases.

Scenario testing aims to simulate operational deployment of
complete biometric systems with demographically varied groups of
users, but within a controlled environment. Like operational test-
ing, this type of testing allows assessment of full systems. Scenario
testing allows control and evaluation of user interaction and im-
portant factors such as variation in the collection environment [9]
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which may be impossible or difficult in other forms of testing. Ad-
ditionally, scenario testing allows the collection of new biometric
data with ground truth information about subject demographics
and metadata regarding system interactions that can facilitate root
cause analysis of any system errors. Scenario tests require appro-
priate resources and physical test facilities (e.g., The Maryland Test
Facility; https://mdtf.org).

2.2 Biometric Face Recognition
Face recognition is the process of using the physiological charac-
teristics of a person’s face to verify that person against a claimed
identity (e.g., matching a live captured face to a face printed on an
identity document) or to identify them against a gallery of known
subjects (e.g., individuals boarding a plane). In order to perform
this function, a face recognition system must first acquire a face
sample from the unknown individual. Sample acquisition is defined
as successfully completing two steps: 1) capturing a sample (i.e.,
taking a photograph) and 2) having the resulting sample be de-
clared "suitable" according to the acquisition systems policy [10].
An acquisition of a suitable sample in an operational context could
mean many things, including: the sample was captured, a face was
detected, the face passed a quality filter, and/or the face was suc-
cessfully extracted by a face recognition algorithm. Prior scenario
testing research has consistently shown the largest source of error
in facial recognition to be failure-to-acquire [14, 15], meaning a
failure to complete both of the steps previously described. This
reinforces the notion that failure-to-acquire a suitable data sample
is an important aspect to consider when attempting to estimate the
real-world performance of an AI system [11].

2.3 Face Detection
Fully automated acquisition of biometric samples for face recogni-
tion requires the use of face detectors. Given an image that contains
a facial sample, face detectors return a bounding box around the
facial sample. Face detection has been of longstanding interest in
machine vision due to the numerous use cases supported by this
capability [36]. Because of this long history, popular machine vision
libraries like OpenCV and Dlib contain built-in face detectors. These
libraries are available in a variety of programming languages, com-
mon in computer vision academic curricula and machine learning
tutorials, and are active in their respective open-source reposito-
ries. For example, the OpenCV python package “opencv-python”
is downloaded over half a million times a day [30]. Therefore, it is
highly likely these open-source machine vision libraries are regu-
larly deployed in operational machine vision applications.

Face detection systems are benchmarked using retrospective
evaluations [37]. Whereas these benchmarks reveal performance
differences between different detectors, they generally do not ad-
dress demographic differentials. Furthermore, face detection sys-
tems are likely trained on images included in such datasets which
may artificially improve their performance on such benchmarks.
Recently, Yang et al. added demographic labels to the wider-face
benchmark dataset and found demographic performance differen-
tials in several open-source face detection models [38]. Dooley et
al. have demonstrated demographic differentials in face detection
robustness to digital perturbations applied to images from several

datasets [7]. Both studies have shown that detection performance is
reduced based on several demographic factors, including for people
with darker apparent skin lightness.

In some ways, face detection is viewed as a commodity technol-
ogy with most work on face related demographic performance fo-
cused instead on demographic differentials in face recognition [12].
Further, there has been a recent proliferation of face detection tools
including open-source projects and services provided via web-based
APIs and developers may use whatever detector is most convenient
for their application. Developers new to image processing may be
biased toward the most readily available systems that are frequently
included in tutorials including face detectors in OpenCV [24, 32]
and Dlib [33]. Similarly, customers purchasing biometric systems
that include face detection components generally do not ask about
detection performance. It is important to ensure that popular pack-
ages do not introduce avoidable performance issues into machine
vision systems relying on face detection. Such issues can go unno-
ticed even in deployed systems especially when they only affect a
minority group or an acceptable level of performance is achieved
in aggregate.

3 Methods
3.1 Biometric Systems
Two kiosk-based face acquisition systems (System A and System
B) were tested in a scenario test to determine if they were ready
for broad deployment. The systems were already operational in
limited deployments. Both systems returned a single face image
for each subject standing in front of the system. System A directed
all aspects of the subject interaction automatically. System B was
staffed by an operator required only to initiate image capture and
inform the subject when the process completed. The operator did
not provide any information to the subject or answer any of the
subject’s questions. Markers on the ground indicated the appro-
priate standing location in front of the systems. Each subject used
System A followed by System B.

3.2 Subjects and Demographics
Systems were tested with a demographically varied population of
624 volunteer subjects (Figure 1). All subjects consented to partici-
pate in the study under an established Institutional Review Board
(IRB) protocol. Age, gender, height, and race were self-reported
during study enrollment. We use the term sex to refer to male
and female subjects. Presented race categories included: "American
Indian or Alaska Native", "Asian", "Black or African American", "His-
panic or Latino", "Multi", "Other", and "White" in accordance with
the U.S. Office of Management and Budget categories (pre-2024
update) [27]. Due to limited sample sizes in some self-reported race
categories, race was recategorized to "Black" (B), "Other" (O), and
"White" (W).

Skin lightness was measured using a calibrated colormeter (cy-
berDERM, DSM III). Measurements were collected from the left
and right temples of each subject and averaged. Skin lightness was
extracted as the 𝐿∗ component of CIELAB color (Figure 1E).

Two binary covariates known to affect biometric systems, head
coverings and glasses, were analyzed. Head covering was defined
to be yes (Y) if a subject’s head was obstructed in any fashion when
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Figure 1: Distributions of subject self-reported and same-day
measured demographics. A. Counts of subject self-report sex:
(M) Male; (F) Female. B. Distribution for subject self-reported
age in years. C. Distribution of subject self-reported height
in inches. D. Counts of subject self-reported race. Due to low
sample sizes, subjects with responses other than (B) Black or
(W) White are grouped into a general (O) "Other" category
for analysis. E. Distribution of subject same-day measured
skin lightness (L*).

Table 1: Counts of annotated variables: glasses and head cov-
ering. Counts of subjects wearing glasses or a head covering
(Y) and not wearing glasses or not wearing a head covering
(N) while interacting with System A and System B.

System Variable Y N
System A Glasses 436 188
System B Glasses 429 195

System A Head Covering 545 79
System B Head Covering 545 79

standing in front of the system; and glasses was defined to be yes (Y)
if a subject was wearing a set of glasses while in front of the system.
Two reviewers annotated images from each system with these two
variables. If the subject’s head was not fully in view in the image,
videos of the subject’s interaction with the system were reviewed.
Reviewer annotation discordance for glasses and head covering
were minimal. Less than 1% of images had annotation differences
between reviewer 1 and reviewer 2 after initial review. All reviewer
disagreements were resolved after a second joint review. Table 1
shows the counts for head covering and glasses. Ten subjects were
excluded from analysis due to missing demographic data. Missing
data was a random event unrelated to the performance of the tested
systems.

3.3 Enrollment and Scenario Test
Prior to the start of testing, an enrollment systemwas used to collect
high quality subject face images using quality criteria suitable for
identity documents (enrollment transactions) [17]. Subjects stood in
front of a gray backgroundwith a frontal pose relative to the camera.
They were asked to remove any glasses or head coverings and
maintain a neutral expression. These images represent an attended
human-adjudicated enrollment use-case.

The scenario test was designed to replicate the intended high-
throughput biometric identification use-case for the two acquisition
systems. Subjects were briefed about the operational use-case (high-
throughput biometric identification), but not about the technical
details of each system. Subjects were asked to comply with all
instructions presented by the systems. Each subject interacted with
both systems. The systems attempted to collect a single face image
for each subject (System A and System B transactions). The images
had to pass an image quality check built into each system. Each
subject transaction was recorded by the test infrastructure and
associated with subject demographics, captured images, and the
outcome of the quality check.

3.4 Datasets
Analyses were performed on three datasets of outcomes, images,
and demographics associated with subject transactions with each
biometric system: Enrollment, SystemA, and SystemB. The datasets
contained a single image for each subject with the exception of
System A, which failed to obtain an image for one subject. System
B returned numerous images which failed to pass the built-in image
quality check resulting in a failure to acquire outcome. All datasets
used for modeling had complete observations.

3.5 Face Detectors
Weexamined three distinct face detectors. The first detector (OpenCV)
utilizes the pre-trained1 Haar cascade classifier implemented in
OpenCV [36]. The second detector (Dlib) is Dlib’s face detector
based on the Histogram of Oriented Gradients feature descriptor
combined with a linear Support Vector Machine [6]. This detector
is accessible through Dlib’s get_frontal_face_detector() func-
tion. The third detector (DNN) employs OpenCV’s Deep Neural Net-
work module, utilizing a pre-trained Single Shot Multibox Detector
model with a ResNet-10 backbone. Model files2 were sourced from a
GitHub repository (https://github.com/sr6033/face-detection-with-
OpenCV-and-DNN; last commit in 2018).

3.6 Performance Measures
We consider two measures for our analysis; failure to acquire rate
(FTAR) and failure to detect rate (FTDR). FTAR was measured on
imagery collected from three systems during the scenario test:
System A, System B, and Enrollment. Each systrem consisted of
both a face detector, 𝑓 and a dataset, 𝑑 ; FTAR for system {𝑑, 𝑓 },
𝛾𝑑,𝑓 , was computed as the proportion of subjects for which the
system failed to capture or captured an image that did not pass the

1We used the Haar cascade frontal classifier stored in
haarcascade_frontalface_default.xml
2OpenCV DDNmodel files included res10_300x300_ssd_iter_140000.caffemodel
and deploy.prototxt.txt
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system’s quality check, in accordance with the ISO/IEC 2382-37
convention.

FTDR was measured for three open-source face detectors using
images from System A and Enrollment datasets. Each image was
labeled face detected true if a valid bounding box was returned by
the detector. Valid face bounding boxes were required to include
both of the eyes, the nose and the mouth. Validity was established
by two reviewers that independently reviewed the position of the
bounding box relative to the image. Reviewers agreed on 100% of
all reviewed images. Based on these results, FTDR for face detector
𝑓 and dataset 𝑑 , 𝜂𝑓 ,𝑑 , was computed as the proportion of images
in each dataset for which the detector failed to return a valid face
bounding box.

3.7 Statistical Analysis
To estimate demographic effects on 𝛾𝑓 ,𝑑 and 𝜂𝑓 ,𝑑 we apply general-
ized linear modeling techniques using a logit link function, 𝑔(𝜋) =
𝑙𝑛( 𝜋 𝑗

1−𝜋 𝑗
), to estimate the log odds of a failure to acquire/detect as

a linear combination of our demographic covariates. We consider
seven demographic variables: race, age, sex, height, skin lightness or
𝐿∗, head covering, and glasses. We normalized the continuous vari-
ables age, height, and 𝐿∗ prior to fitting according to 𝑧 = (𝑥−𝜇𝑥 )/𝜎𝑥 .
We estimatedmodel parameters 𝛽 , using iteratively reweighted least
squares (IRLS). The inclusion of higher order terms or interaction
terms, which could lead to over-fitting, were not considered in this
analysis. Given our set of subjects 𝑗 ∈ 1, ...𝑛, a dataset 𝑑 (subsec-
tion 3.4), a face detection algorithm 𝑓 (subsection 2.3), a full model
for failures to acquire,𝛾𝑓 ,𝑑,𝑗 , or failures to detect, 𝜂𝑓 ,𝑑,𝑗 is as follows.
Let 𝜃 𝑓 ,𝑑,𝑗 ∈ {𝛾𝑓 ,𝑑,𝑗 , 𝜂𝑓 ,𝑑,𝑗 }, then

𝜃 𝑓 ,𝑑,𝑗 =𝛽0 + 𝛽1𝑟𝑎𝑐𝑒 𝑗 + 𝛽2𝑎𝑔𝑒 𝑗 + 𝛽3𝑠𝑒𝑥 𝑗 + 𝛽4ℎ𝑒𝑖𝑔ℎ𝑡 𝑗 + 𝛽5𝐿
∗
𝑗

+ 𝛽6ℎ𝑒𝑎𝑑𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔𝑑,𝑗 + 𝛽7𝑔𝑙𝑎𝑠𝑠𝑒𝑠𝑑,𝑗 + 𝜖𝑓 ,𝑑,𝑗
(1)

We define an optimal model for a given 𝑑 or given 𝑓 as one that
minimizes the Bayesian Information Criterion or 𝐵𝐼𝐶 = 𝑘𝑙𝑛(𝑛) −
2𝑙𝑛(�̂�), where 𝑘 represents the number of estimated parameters
in the model, 𝑛 represents the sample size, and �̂� represents the
maximum value of the model’s fitted likelihood. BIC measures
the goodness of fit of the model while discouraging over-fitting
with a penalty for increasing the number of model parameters. To
obtain our optimal model, we apply a step wise procedure in both
directions using the step() function in the R package MASS.

Model assumptions were checked for each model as follows. The
linearity assumption for each model was checked graphically; mul-
ticollinearity was checked using the generalized variance inflation
factors; outliers were found using Cook’s distance. In the presence
of any outliers or potential influential point(s), partial models were
fit without the outlier(s) to compare any deviations from the full
model. Modeling assumptions held for all models and no outlier
was found to be influential in this analysis.

Models fit to the data were assessed by using both Tjur’s pseudo
𝑅2 or the coefficient of discrimination [35] and the common cal-
culation for the area under the curve or the AUC. An additional
sensitivity analysis of the optimal model coefficients was performed
through the use of a Boruta feature selection algorithm. The al-
gorithm provides an unbiased and stable selection of important

Table 2: Number of acquired and not acquired subjects on
System A and System B and McNemar’s test results.

Not Acquired
(System B)

Acquired
(System B)

Not Acquired
(System A) 1 1

Acquired
(System A) 43 579

𝜒2 = 38.205, 𝑑 𝑓 = 1, 𝑝 = 6.37 × 10−10

Table 3: System B maximum and minimum observed FTARs
and the observed change in FTAR, Δ𝐹𝑇𝐴𝑅 = 𝑚𝑎𝑥 (𝐹𝑇𝐴𝑅) −
𝑚𝑖𝑛(𝐹𝑇𝐴𝑅). Variables head covering (HC) and skin lightness
(L*) are abbreviated for spacing.

Variable Min FTAR |
Category

Max FTAR |
Category Δ𝐹𝑇𝐴𝑅

Age Group 4.40% | 31-45 11.31% | 61+ 6.91
Sex 4.82% | F 9.59% | M 4..77
Glasses 3.26% | N 15.38% | Y 12.10
HC 4.59% | N 24.05% | Y 19.50
Height 5.73% | [54,64] 9.23% | (70,79] 3.50
Race 4.02% | W 9.40% | B 5.38
L* 0.00% | (53.7,55.2] 17.74% | [21.1,33.4] 17.74

attributes from an information system [22]. All optimal model co-
efficients were found to be the most important coefficients selected
in the Boruta algorithms. All statistical tests used a significance
level of 𝑝 ≥ 0.05.

Net change in estimated probability, Δ𝜋 , for a covariate was
measured as the absolute difference between estimated probabilities,
𝜋 , for minimum and maximum observed covariate values holding
other covariates constant: at average values for numeric covariates
(age, height, skin lightness); and false for glasses and head covering.

4 Results
The FTAR for System A was significantly lower than for System B
(𝛾𝐴 = 0.32%; 𝛾𝐵 = 7.05%; Table 2) despite both systems operating
on the same subjects. Just 2 subjects failed to be acquired on System
A as compared with 44 on System B, a 20-fold difference in the
performance of an operational face acquisition system.

4.1 Demographic Effects in Face Acquisition
4.1.1 FTAR Disaggregation. To understand the factors responsible
for increased FTAR for System B, we disaggregated its FTAR based
on available demographic factors (Figure 2). This analysis revealed
large demographic differentials in FTAR for some demographic
factors. Table 3 lists each demographic variable and Δ𝐹𝑇𝐴𝑅 the
difference between the maximum and minimum observed FTAR.
The largest differentials were related to head coverings and skin
lightness.
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Figure 2: System B FTARs disaggregated across seven demo-
graphic factors. A. Disaggregated by self-reported race: (B)
Black; (W)White, (O) Other. B. Disaggregated by self-reported
sex: (F) Female; (M)Male. C. Disaggregated bywearing glasses
(Y) and not wearing glasses (N) while interacting with System
B. D. Disaggregated by same-day measured skin lightness 𝐿∗.
E. Disaggregated by self-reported height. F. Disaggregated by
wearing a head covering (Y) and not wearing a head cover-
ing (N) while interacting with System B. G. Disaggregated by
self-reported age.

4.1.2 Modeling FTAR. The results presented in Table 3 do not
account for the interdependence between factors. Categorical vari-
ables generalize several quantitative aspects of a subject. For ex-
ample, sex tends to indicate average height, race tends to indicate
average skin lightness, and glasses tend to indicate average age. In
practice, people are more complicated. We estimated the distinct
demographic effects on System B’s FTAR using generalized linear
modeling (subsection 3.7). This estimates the distinct impact of de-
mographic factors on error rates while controlling for demographic
effects from other factors.

We modeled the effects of seven demographic factors on FTAR.
Starting with a full model including all seven covariates (1), we
used a BIC-based model selection approach to find an optimal
model including only those demographic covariates that improved
model fit while minimizing the number of parameters. The optimal
model retained four of the seven covariates: skin lightness 𝐿∗, head
covering, glasses, and age. Selection of skin lightness, rather than
race in the optimal model indicates that skin lightness was a better
predictor of FTAR than self-reported race, similar to prior results
observed in face recognition performance [4, 5]. Neither sex nor
height were retained suggesting these factors did not independently
predict FTAR for System B.

We computed the net change in estimated probability, or Δ𝜋

(subsection 3.7) for each retained covariate. Table 4 shows the pa-
rameter estimates and Δ𝜋 . This analysis showed that, holding all
else constant, the predicted FTAR for systemB increased for subjects
wearing glasses or head coverings respectively. Similarly, FTAR
increased for older people and people with darker skin lightness
values. It is important to note that the effects of glasses and head
coverings could be mitigated in operational settings by directing
users to remove those articles. On the other hand, the effects of skin
lightness and age could not as these cannot be changed. Indeed, Δ𝜋

for skin lightness was the largest observed differential, predicting
that the system would fail for 8.03%of individuals with the darkest
skin lightness as compared with only 0.45% of individuals with the
lightest.

4.2 Face Detection Algorithm Performance
We hypothesized that a major contributor to the realized difference
in performance between System A and System B is the face detector
used by these systems. To test this hypothesis, we simulated 6
notional systems using the acquired Enrollment (𝑛 = 624) and
System A (𝑛 = 622) images as a proxy for two acquisition systems
and combined these with three face detectors (OpenCV, Dlib, DNN)
to create the 6 simulated systems.

We reasoned that, if part of System B’s performance issues lie
with the face detector, we would see elevated FTAR using System
A’s images, with demographic effects similar to the measured FTAR
for System B. Enrollment images were used to determine whether
the effect was specific to the high-throughput use-case – a potential
explanation for why acquisition issues were not addressed during
earlier developmental testing. System B images were not included
in this analysis because of the demographic imbalance in the ac-
quired images (Figure 2). The images acquired by this system would
comprise a sanitized dataset [38]. This was not an issue for the other
datasets: images from Enrollment included all subjects; System A
had a face detector with no apparent demographic differentials.

Table 5 shows the observed overall FTDR across the six simu-
lated systems. All three simulated systems based on Enrollment
images had near zero FTDR and thus no observed demographic
differentials for these standardized, high-quality acquired face im-
ages (subsection 3.4). Two of the three simulated systems based on
System A images had substantial FTDRs. The System A images with
OpenCV face detection had the highest observed FTDR at 8.36%
closely mirroring the observed System B scenario test performance
of 7.05%. No failures to detect were observed using the DNN face
detector.

4.2.1 Modeling FTDR. We repeated our linear modeling analysis
(subsection 3.7) to understand the demographic factors that con-
tributed to FTDR for our simulated systems. Of the six simulated
systems, two systems: OpenCV and Dlib with System A images,
had enough failures for this analysis. We modeled the effects of
seven demographic factors on FTDR for both OpenCV and Dlib
with System A’s images. For both systems, the optimal model re-
tained skin lightness and head covering. Glasses were uniquely
retained for OpenCV whereas height was uniquely retained for
Dlib. Interestingly, age was not selected by either model, despite
being selected for System B’s FTAR results, suggesting that age
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Table 4: Parameter estimates for the optimal model, fitting failure to acquire from System B as discussed in subsection 3.7.
Parameters not included in the optimal model are not shown (see Equation 1).

Covariate Estimate [SE] Range 𝜋 (𝑚𝑖𝑛) [SE] 𝜋 (𝑚𝑎𝑥) [SE] Δ𝜋

Intercept -4.23 [0.36] NA NA NA NA
Skin Lightness (𝐿∗) -0.63 [0.18] (-2.87, 1.89) 8.03% [0.04] 0.45% [0.00] 7.58%
Head Covering 1.90 [0.38] {0, 1} 1.43% [0.01] 8.89% [0.03] 7.45%
Glasses 1.92 [0.37] {0, 1} 1.43% [0.01] 9.04% [0.02] 7.60%
Age 0.52 [0.19] (-1.94, 2.23) 0.53% [0.00] 4.40% [0.02] 3.86%

Tjur’s 𝑅2 = 0.19, 𝐴𝑈𝐶 = 0.84

Table 5: FTDR for the 6 simulated notional systems.

Dataset OpenCV Dlib DNN
Enrollment 0.32% 0.00% 0.00%
System A 8.36% 4.02% 0.00%

effects for System B may not have been robustly due to the face
detector. Finally, race was not retained by either model, reinforcing
the observation that detection issues are better explained by skin
lightness (likely due to its interaction with camera optics) rather
than self-reported race categories. Figure 3 shows face images of
subjects from the highest 10 and lowest 10 model predicted FTDR
for OpenCV and Dlib along with each subject’s covariate values.

Table 6 shows the parameter estimates for the factors retained
in each model. This analysis revealed further differences between
OpenCV and Dlib detectors. For the OpenCV system, skin lightness
was the factor with the largest net effect (Δ𝜋 ) whereas for Dlib, the
factor with the largest net effect was height. With the exception of
age, the pattern of effect sizes for the OpenCV FTDR was similar to
that observed for System B FTAR.

5 Discussion
This study shows how widely used, older methods in open-source
packages can introduce demographic differentials into operational
face recognition systems. Face detection is a common operation in
computer vision applications that interact with humans, so much so
that commodity face detection algorithms exist in popular computer
vision packages. However, as shown here, these face detection algo-
rithms may exhibit poor performance and significant demographic
differentials. This highlights the need to test models including in
open-source packages and to provide developers with results so
they can make informed decisions regarding which model is appro-
priate for their intended use-case.

Our findings suggest two reasons why performance issues for
System B were not detected in technology testing. First, the sys-
tem may not have produced high error rates during technology
testing, which can occur in a more controlled environment. Ap-
plying this detector to images from our enrollment use-case, for
example, yielded error rates below 1%. Second, the system may
not have produced high aggregate error rates during technology
testing if the demographic makeup of users did not include var-
ied demographic groups. For example, the system produced error

rates below 1% for people with the lightest skin tones. If people
with lighter skin made up the majority of the population using
the system during technology testing, aggregate performance may
be high even if error rates were elevated for people with darker
skin. Other demographic factors also impacted performance, such
as the presence of head coverings. However, whereas people can
be asked to remove head coverings, in some situations, to facilitate
a face recognition process, they cannot change their skin tone or
other innate characteristics. To maximize the likelihood of detect-
ing issues prior to operations, prospective scenario tests should be
conducted to simulate the real-world use-cases while also ensuring
a sample of different demographic groups sufficient to measure per-
formance differentials. In the case of biometrics, requirements for
such testing have recently been standardized by the International
Organization for Standardization [19]. Similar standardization for
broader AI use-cases will benefit the ability to detect performance
issues through testing.

In the biometric domain, most studies of AI performance focus
on the face matcher, which compares two face images to determine
if they show the same person or different people. This focus is
understandable as face recognition is often considered the more
challenging core problem to be solved in biometric systems. How-
ever, the main source of error in high-throughput biometric systems
is often failure-to-acquire an image [4]. Errors and demographic
differentials in face detection affect all downstream functions [14].
Our study shows that face detection can introduce and did intro-
duce large demographic differentials into an operational system.
This reinforces the notion that, in multi-component AI systems,
errors and demographic differentials can be introduced by any one
component, even if it is considered simple relative to others.

These observed differences between simulated systems highlight
the need to evaluate operationally deployed systems as full sys-
tems and the need for scenario testing of AI systems as a critical
component of AI governance. In our study, Dlib and OpenCV were
well performing face detectors when assessed in combination with
the study’s enrollment process. However, changing the acquisition
source to a deployed operational system, System A, we observed
a large increase in the overall FTDR. Error rates rose from 320
instances out of 100,000 people to 8,360 instances out of 100,000
people, a 26-fold increase, when assessing OpenCV on a curated
dataset versus the imagery produced by System A.

Inclusion of older methods in popular machine vision packages
confers important benefits including backward compatibility, peda-
gogical value, enabling comparative studies, and encouraging rapid
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Figure 3: Example subject face images from System A for subjects in the 10 highest and 10 lowest model estimated FTDR
for OpenCV and Dlib. Subjects shown consented to have their images shared in scientific publications. Detected indicates
actual detection outcome: Y - valid face detected; N - no valid face detected. The model estimated FTDR (𝜋 ) and corresponding
covariate values are provided below the image of each subject. Note that model estimated FTDR is the predicted likelihood that
subjects with similar values of the covariates would fail to be detected.

Table 6: Parameter estimates for the optimal models, fitting failure to detect images from SystemA as discussed in subsection 3.6
and subsection 3.7. Parameters not included in the optimal model are not shown (see Equation 1).

Covariate Estimate [SE] Range 𝜋 (𝑚𝑖𝑛) [SE] 𝜋 (𝑚𝑎𝑥) [SE] Δ𝜋

OpenCV
Intercept -4.00 [0.33] NA NA NA
Skin Lightness (𝐿∗) -1.00 [0.17] (-2.87, 1.89) 24.34% [0.08] 0.28% [0.00] 24.10%
Head Covering 1.46 [0.37] {0, 1} 1.79% [0.01] 7.27% [0.03] 5.48%
Glasses 2.00 [0.35] {0, 1} 1.79% [0.01] 11.88% [0.03] 10.10%

Tjur’s 𝑅2 = 0.22, 𝐴𝑈𝐶 = 0.84
Dlib

Intercept -4.56 [0.43] NA NA NA
Skin Lightness (𝐿∗) -0.63 [0.23] (-2.87, 1.89) 5.91% [0.04] 0.32% [0.00] 5.59%
Head Covering 2.11 [0.46] {0, 1} 1.03% [0.00] 7.94% [0.03] 6.91%
Height 1.07 [0.26] (−3.52, 3.12) 0.02% [0.00] 22.80% [0.12] 22.78%

Tjur’s 𝑅2 = 0.13, 𝐴𝑈𝐶 = 0.90
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development and innovation. Indeed, using these older methods in
some use-cases is sufficient to achieve a high level of performance.
However, our analysis shows that some pre-trained DNNs can lead
to better face detection performance.

Our results show that the pre-trained Haar cascade frontal face
detector can be replaced by the pre-trained DNN detector which
can also be readily implemented in OpenCV. A pre-trained DNN-
based face detector is also available in Dlib. Here, we do not take a
position regarding the specific merits of DNNs as a replacement for
Haar cascades as each method has its own limitations. For example,
DNNs require significant amounts of training data, which can have
copyright and privacy implications, particularly in biometric ap-
plications, and can be more computationally intensive than other
methods. However, when methods with superior performance are
available and have a comparable ease of implementation, we suggest
deprecating older and lower performing methods while ensuring
that the higher-performing alternatives are included in standard
packages. As DNNs and other pre-trained machine learning mod-
els proliferate for a variety of applications, a robust program is
needed to test these systems and update standard packages with
new higher performing methods. This will help system developers
avoid preventable performance issues and demographic differen-
tials in deployments.
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