Watching the watchers: bias and vulnerability in remote proctoring software

Educators are rapidly switching to remote proctoring and examination software for their testing needs, both due to the COVID-19 pandemic and the expanding virtualization of the education sector. State boards are increasingly utilizing these software for high stakes legal and medical licensing exams. Three key concerns arise with the use of these complex software: exam integrity, exam procedural fairness, and exam-taker security and privacy. We conduct the first technical analysis of each of these concerns through a case study of four primary proctoring suites used in U.S. law school and state attorney licensing exams. We reverse engineer these proctoring suites and find that despite promises of high-security, all their anti-cheating measures can be trivially bypassed and can pose significant user security risks. We evaluate current facial recognition classifiers alongside the classifier used by Examplify, the legal exam proctoring suite with the largest market share, to ascertain their accuracy and determine whether faces with certain skin tones are more readily flagged for cheating. Finally, we offer recommendations to improve the integrity and fairness of the remotely proctored exam experience.

By Avi Ginsberg, Ben Burgess, Edward W. Felten and Shaanan Cohney for arXiv.org on May 6, 2022

Enough is Enough. Tell Congress to Ban Federal Use of Face Recognition

Cities and counties across the country have banned government use of face surveillance technology, and many more are weighing proposals to do so. From Boston to San Francisco, Jackson, Mississippi to Minneapolis, elected officials and activists know that face surveillance gives police the power to track us wherever we go. It also disproportionately impacts people of color, turns us all into perpetual suspects, increases the likelihood of being falsely arrested, and chills people’s willingness to participate in first amendment protected activities. Even Amazon, known for operating one of the largest video surveillance networks in the history of the world, extended its moratorium on selling face recognition to police.

By Matthew Guariglia for Electronic Frontier Foundation (EFF) on April 4, 2023

Ben jij straks werkloos door AI?

Het einde van 2022 stond in het teken van de AI-tools. Je maakt digitale kunstwerken met DALL-E, AI-profielfoto’s met Lensa en als klap op de vuurpijl genereer je binnen een paar seconden een hele sollicitatiebrief of essay via ChatGPT. Dat AI, of kunstmatige intelligentie, veel kan wisten we. Maar ChatGPT wordt echt gezien als een doorbraak. Wat is het? En worden wij overbodig door AI? Oh en Devran dacht trouwens lekker ontspannen het nieuwe jaar in te gaan met de chatbot, maar of dat nou zo’n goed idee was…

By Robin Pocornie for YouTube on December 31, 2022

Dutch Institute for Human Rights: Use of anti-cheating software can be algorithmic discrimination (i.e. racist)

Dutch student Robin Pocornie filed a complaint with Dutch Institute for Human Rights. The surveillance software that her university used, had trouble recognising her as human being because of her skin colour. After a hearing, the Institute has now ruled that Robin has presented enough evidence to assume that she was indeed discriminated against. The ball is now in the court of the VU (her university) to prove that the software treated everybody the same.

Continue reading “Dutch Institute for Human Rights: Use of anti-cheating software can be algorithmic discrimination (i.e. racist)”

Antispieksoftware op de VU discrimineert

Antispieksoftware checkt voorafgaand aan een tentamen of jij wel echt een mens bent. Maar wat als het systeem je niet herkent, omdat je een donkere huidskleur hebt? Dat overkwam student Robin Pocornie, zij stapte naar het College voor de Rechten van de Mens. Samen met Naomi Appelman van het Racism and Technology Centre, die Robin bijstond in haar zaak, vertelt ze erover.

By Naomi Appelman, Natasja Gibbs and Robin Pocornie for NPO Radio 1 on December 12, 2022

Eerste keer vermoeden van algoritmische discriminatie succesvol onderbouwd

Een student is erin geslaagd voldoende feiten aan te dragen voor een vermoeden van algoritmische discriminatie. De vrouw klaagt dat de Vrije Universiteit haar discrimineerde door antispieksoftware in te zetten. Deze software maakt gebruik van gezichtsdetectiealgoritmes. De software detecteerde haar niet als ze moest inloggen voor tentamens. De vrouw vermoedt dat dit komt door haar donkere huidskleur. De universiteit krijgt tien weken de tijd om aan te tonen dat de software niet heeft gediscrimineerd. Dat blijkt uit het tussenoordeel dat het College publiceerde.  

From College voor de Rechten van de Mens on December 9, 2022

Dutch student files complaint with the Netherlands Institute for Human Rights about the use of racist software by her university

During the pandemic, Dutch student Robin Pocornie had to do her exams with a light pointing straight at her face. Her fellow students who were White didn’t have to do that. Her university’s surveillance software discriminated her, and that is why she has filed a complaint (read the full complaint in Dutch) with the Netherlands Institute for Human Rights.

Continue reading “Dutch student files complaint with the Netherlands Institute for Human Rights about the use of racist software by her university”

Racist Technology in Action: Uber’s racially discriminatory facial recognition system firing workers

This example of racist technology in action combines racist facial recognition systems with exploitative working conditions and algorithmic management to produce a perfect example of how technology can exacarbate both economic precarity and racial discrimination.

Continue reading “Racist Technology in Action: Uber’s racially discriminatory facial recognition system firing workers”

Racist Technology in Action: Proctoring software disadvantaging students of colour in the Netherlands

In an opinion piece in Parool, The Racism and Technology Center wrote about how Dutch universities use proctoring software that uses facial recognition technology that systematically disadvantages students of colour (see the English translation of the opinion piece). Earlier the center has written on the racial bias of these systems, leading to black students being excluded from exams or being labeled as frauds because the software did not properly recognise their faces as a face. Despite the clear proof that Procorio disadvantages students of colour, the University of Amsterdam has still used Proctorio extensively in this June’s exam weeks.

Continue reading “Racist Technology in Action: Proctoring software disadvantaging students of colour in the Netherlands”

Proudly powered by WordPress | Theme: Baskerville 2 by Anders Noren.

Up ↑